Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Anthony C. Willis, ${ }^{\text {a }}$ Gulliver T. Dalton ${ }^{b}$ and Mark G. Humphrey ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and ${ }^{\mathbf{b}}$ Department of Chemistry, Australian National University, Canberra, ACT 0200, Australia

Correspondence e-mail:
mark.humphrey@anu.edu.au

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.022$
$w R$ factor $=0.025$
Data-to-parameter ratio $=10.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Heptacarbonylbis($\mu_{3}-\eta^{2}$-diphenylacetylene)($\boldsymbol{\eta}^{5}$-pentamethylcyclopentadienyl)triiridiumtungsten

The title compound, $\left[\mathrm{WIr}_{3}\left(\eta-\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mu_{3}-\eta^{2}-\mathrm{C}_{14} \mathrm{H}_{10}\right)_{2}(\mathrm{CO})_{7}\right]$, is a mixed-metal cluster with a tetrahedral metal core geometry. One diphenylacetylene ligand is $\mu_{3}-\eta^{2}$-coordinated to the triiridium face, while the other is $\mu_{3}-\eta^{2}$-coordinated to a diiridiumtungsten face. The W atom is ligated by a pentamethylcyclopentadienyl ligand and a terminal carbonyl, and the Ir atoms are each ligated by two terminal carbonyls.

Comment

The chemistry of the cyclopentadienyl-ligated tetrahedral mixed-metal cluster $\mathrm{WIr}_{3}(\mathrm{CO})_{11}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ with diphenylacetylene has been examined in order to enhance understanding of how alumina-supported bimetallic W-Ir particles behave (Shapley et al., 1993). We have now examined the reaction of the pentamethylcyclopentadienyl-ligated cluster $\mathrm{WIr}_{3}(\mathrm{CO})_{11}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ (Usher et al., 2004) with diphenylacetylene, and have structurally characterized the product, (I).

(I)

In (I), the tetrahedral core geometry of the precursor is preserved, one alkyne bridges the triiridium face, and the other alkyne bridges a diiridiumtungsten face. Comparison of core bond distances with those of the cyclopentadienylcontaining analogue $\mathrm{WIr}_{3}\left(\mu_{3}-\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ (Shapley et al., 1993) reveals a ca $0.03 \AA$ lengthening of core distances involving tungsten; all other core distances are essentially identical.

Experimental

Diphenylacetylene ($19.5 \mathrm{mg}, 0.109 \mathrm{mmol}$) was added to an orange solution of $\mathrm{WIr}_{3}(\mathrm{CO})_{11}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(20.5 \mathrm{mg}, 0.0170 \mathrm{mmol})$ in toluene $(25 \mathrm{ml})$ and the mixture was heated at reflux for 35 min . The resulting red solution was taken to dryness on a rotary evaporator, and the residue dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(c a 3 \mathrm{ml})$ and applied to preparative thin-layer chromatography plates. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petrol (3/7) gave five bands: band 1 was yellow ($R_{\mathrm{F}}=0.66$); band 2 was purple ($R_{\mathrm{F}}=0.51$); band 3 was yellow ($R_{\mathrm{F}}=0.46$); band 4 was purple ($R_{\mathrm{F}}=0.42$); band 5 was purple ($R_{\mathrm{F}}=0.23$). Bands 3,4 and 5 were in trace amounts and could not be identified. The contents of band 1 were identified as $\operatorname{Ir}_{2}\left\{\mu-\eta^{4}-\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})\right\}(\mathrm{CO})_{5}$ $(2.5 \mathrm{mg}, 0.0290 \mathrm{mmol}, 17 \%)$ by comparison with literature IR and MS data (Notaras et al., 2001). The contents of band 2 were identified as

Received 9 February 2004

Accepted 19 March 2004
Online 27 March 2004

Figure 1
A view of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
$\mathrm{WIr}_{3}\left(\mu_{3}-\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \quad(16 \mathrm{mg}, \quad 0.011 \mathrm{mmol}, \quad 65 \%)$. Analysis calculated for $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{Ir}_{3} \mathrm{O}_{7} \mathrm{~W}$: C 37.32 , H 2.44%; found: C $37.17, \mathrm{H} 2.40 \%$. MS (secondary ion, Cs^{+}): $1448-28 n\left([\mathrm{M}-n \mathrm{CO}]^{+}, n\right.$ $=0-7$. IR ($c-\mathrm{C}_{6} \mathrm{H}_{12}$): v(CO) $2049(s), 2022(v s), 2012(v s), 1995(w)$, $1973(s), 1954(w), 1928(w), 1770(v w) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.20-6.80$ $(m, 20 H, \mathrm{Ph}), 2.01\left(s, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$.

Crystal data

$\left[\mathrm{WIr}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{14} \mathrm{H}_{10}\right)_{2}(\mathrm{CO})_{7}\right]$
$M_{r}=1448.28$
Monoclinic, $P 2_{1 / c}$
$a=15.7919$ (2) £
$b=14.3952$ (2) \AA
$c=17.9788$ (2) \AA
$\beta=90.7217$ (6$)^{\circ}$
$V=4086.75(9) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: by integration (Coppens, 1970; Mackay et al., 2000)
$T_{\text {min }}=0.179, T_{\text {max }}=0.410$
85630 measured reflections

Refinement

Refinement on F

$R=0.022$
$w R=0.025$
$S=1.08$
5135 reflections
505 parameters
H -atom parameters constrained
$D_{x}=2.354 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 62525 reflections
$\theta=3-27^{\circ}$
$\mu=12.59 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Needle, black
$0.22 \times 0.10 \times 0.08 \mathrm{~mm}$

9375 independent reflections
5135 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.07$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-20 \rightarrow 20$
$k=-18 \rightarrow 18$
$l=-23 \rightarrow 21$

Weighting scheme: Chebychev polynomial with 5 parameters
(Carruthers \& Watkin, 1979):
$0.912,0.196,1.01,0.0217,0.309$
$(\Delta / \sigma)_{\text {max }}=0.006$
$\Delta \rho_{\text {max }}=1.10 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.59 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters (\AA).

Ir1-Ir2	$2.6928(4)$	Ir2-C70	$2.175(6)$
Ir1-Ir3	$2.6657(4)$	Ir3-W4	$2.8309(4)$
Ir1-W4	$2.7328(4)$	Ir3-C60	$2.150(7)$
Ir1-C50	$2.217(7)$	Ir3-C80	$2.202(6)$
Ir1-C60	$2.210(6)$	W4-C70	$2.211(7)$
Ir2-Ir3	$2.6006(3)$	W4-C80	$2.188(7)$
Ir2-W4	$2.7825(4)$	C50-C60	$1.403(9)$
Ir2-C50	$2.114(7)$	C70-C80	$1.411(9)$

H atoms were made to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}=$ $1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \Delta \rho_{\max }$ and $\Delta \rho_{\text {min }}$ are located in the vicinity of the metal atoms.

Data collection: COLLECT (Nonius, 1997-2001); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: TEXSAN (Molecular Structure Corporation, 1992-1997); software used to prepare material for publication: CRYSTALS.

We thank the Australian Research Council (ARC) for financial support and Johnson-Matthey Technology Centre for the generous loan of iridium salts. MGH holds an ARC Australian Professorial Fellowship.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (2000). maXus. Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.
Molecular Structure Corporation (1992-1997). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.
Notaras, E. G. A., Lucas, N. T., Blitz, J. P. \& Humphrey, M. G. (2001). J. Organomet. Chem. 631, 143-150.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Shapley, J. R., Humphrey, M. G. \& McAteer, C. H. (1993). ACS Symp. Ser. 517, 127.

Usher, A. J., Dalton, G. T., Lucas, N. T., Waterman, S. M., Petrie, S., Stranger, R., Humphrey, M. G. \& Willis, A. C. (2004). J. Organomet. Chem. 689, 5057.

Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper, R. I. (2001). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.

